
Synthesis of contact-rich behaviors
with optimal control

Emo Todorov

Applied Mathematics, Computer Science & Engineering
University of Washington

Contributions from:

Funding: NSF, NIH, DARPA

Kendall
Lowrey

Vikash
Kumar

Yuval
Tassa

Tom
Erez

Igor
Mordatch

Paul
Kulchenko

Svet
Kolev

Galen
Andrew

Unification

If you start with domain-specific methods (ZMP, SLIP, synergies, closures)
unification is a problem.

If you start with optimal control, everything is unified by definition,
but you have to figure out how to make it feasible.

Contact-invariant optimization (CIO)

Contacts make the dynamics discontinuous,
and may seem to require combinatorial search.

CIO is a domain-specific relaxation method
designed to avoid such combinatorial search.

Mordatch, Todorov and Popovic, SIGGRAPH 2o12
Mordatch, Popovic and Todorov, SCA 2012

1 2

43

Configuration: q
Contact force: f
Applied force:

Minimize over trajectories q(t), f(t):

TaskCost(q, f) + ControlCost(u(q, f)) +

Penetration(q) + FrictionCone(f) +

fnormal * ContactDistance(q) * continuation

 fqJqqcqqMu
T

 ,

Results

Extension to musculo-skeletal dynamics

Mordatch, Wang, Todorov and Koltun, SIGGRAPH ASIA 2013

- skeletal dynamics simulated in MuJoCo
- muscle model based on Wang et al 2012
- metabolic energy model based on Anderson and Pandy 1999
- modifications to the CIO method

fce = flv(lce, vce)a

fpe(lce)

fse(lse)

Summary so far

Trajectory optimization can generate surprisingly rich and complex movements,
without help from motion capture, manual scripting or careful initialization.

Generic optimization methods can be used (L-BFGS, Gauss-Newton),
but contacts must be handled carefully so as to provide sufficient smoothing.

Optimizing contact-related variables (as in CIO) together with the trajectory
produces the richest behaviors we have obtained.

We need ~1000 iterations to discover these trajectories from scratch.

This takes ~5 minutes of CPU time.

How do we get to real-time?

Model-predictive control (MPC)

We have been able to apply MPC to the full robot dynamics thanks to:

- improved models of contact dynamics;
- efficient physics simulator (MuJoCo);
- efficient optimization algorithm (iLQG);
- selection of cost functions that are realistic yet easier to optimize.

Tassa, Erez and Todorov, IROS 2012
Erez et al, Humanoids 2013
Tassa et al; Kumar et al; Erez et al; ICRA 2014

1

,min
Nt

tk

kkNt uxxh

At each time step t, do trajectory optimization
with warm-start from the previous time step:

Cost function automation

i

i tiii referencetcontrol,tstatefeaturenorm*coeftcost

XML file format for specifying cost functions:

Tassa, Erez and Todorov, 2014, unpublished

Training neural networks with trajectory optimization

Trajectory optimization:
optimize the sequence of body and brain states, under a mixed cost
that includes movement costs and differences from the network output
(so as to keep the trajectories and the network close throughout training)

Network training:
supervised learning from the optimized trajectories

The “action” is the change in state. Thus the network is not learning a control law,
but rather the dynamics of the system under an (implicit) control law.

Mordatch, Andrew, Lowrey, Popovic and Todorov, 2015, under review

Training in the cloud

optimize
trajectory 1

optimize
trajectory 2

optimize
trajectory N

optimize
network weights

CPU #1 CPU #2 CPU #30

GPU

…

asynchronous updating

Training a network with 5 layers of 250 units (250,000 weights) takes 2.5 hours,
200 steps of (re) optimization for 1,000 trajectory pieces.

Each CPU has 16 cores. The GPU has 1536 cores.

Making the training set diverse

The movement cost (i.e. the spatial goal)
change often, so as to generate a tree of
trajectories that span a large portion
of the relevant behavioral space.

Noise is injected during training, forcing
the network to learn not only the nominal
response but also the corrections around it.
This resembles Tangent Propagation.

Results

The same training method works for a variety of
motor tasks and body morphologies:

- flying
- swimming
- bipedal walking
- quadrupedal walking

Separate vs. joint optimization

Can we create a fixed dataset of optimized
trajectories, and then train the network?

Or alternatively, use imitation learning
from motion capture data?

This does not work well:

- the cost is higher at the end of training;

- rollouts from the network are unstable.

Joint optimization of the network and the
trajectories has proven to be essential.

Robust control with ensemble-CIO

Robots tend to be different from our models, even after system identification.
Thus a movement optimized with respect to the model may not work on the robot.

To improve robustness, we generate ~10 perturbed models around the nominal one,
and optimize a single trajectory that must be feasible for all perturbed models.

We then execute this trajectory on the robot, using the locally-optimal feedback gains
obtained from the trajectory optimizer.

Mordatch, Lowrey and Todorov, IROS 2015

Body position

Contact dynamics with adjustable softness

We either have to start with a soft model and use continuation to make it harder,
or in the case of MPC, optimize through a soft model all the time and
apply the controls to the nominal hard model.

This requires a contact model that has adjustable softness, is sufficiently smooth to
be used within an optimization loop, and can be evaluated quickly.

We have developed such a contact model and implemented it in MuJoCo.
Forward dynamics become a convex optimization problem.
Inverse dynamics are uniquely-defined and can be computed analytically.

NP-hard complementarity constraints are avoided.
Continuous-time formulation, amenable to RK4 etc.
Rich parameterization that facilitates system id.

Todorov, ICRA 2010, 2011, 2014

Physically-consistent estimation

Given (noisy and incomplete) sensor data:
- actuator controls
- movement kinematics
- contact forces

estimate:
- movement kinematics
- contact forces
- model parameters

by minimizing the difference between
measured and predicted sensor data,
plus deviations from parameter priors.

Kolev and Todorov, 2015, under review

model parameters

tr
a

je
ct

o
ri

es

sparse Hessian
factorization

coupled
optimization

Results

Model parameters from different datasets

Model parameters from multiple restarts

MuJoCo: www.mujoco.org

MuJoCo Pro
SDK for expert users;
invitation-only preview.

MuJoCo Sim
simulator built with the SDK;
coming soon.

MuJoCo HAPTIX
Sim + motion capture and VR;
developed for DARPA;
available now.

MuJoCo is just the simulator.

The next step is to implement a
universal optimizer on top of it.

