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Summary

* Theoretically, planning with contact is unified
* Multi-modal planning
* Fast time scaling optimization

e Control = fast planning

* Thoughts about whole-body + manipulation
control
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Idea #1.: All is equal in state
space

* We already know how to model manipulation and
locomotion in a uniform manner...
* |[n state space
* Hybrid systems
* Uncertainty: MDPs/POMDPs



Multi-Modal Planning

* The system must
switch between
continuous motion
spaces

* The discrete
sequence of spaces
must be chosen
along with the
continuous motion

* |nstances

* Reconfigurable
robots

 Switched actuators
* Motion with tethers
* Manipulation

Legged locomotion
LTL specifications Cortes et al 2002




M Od es [Hauser and Latombe 2009]

[Hauser and Ng Thow Hing 2010]

* A mode o defines a continuous subspace of
feasible motion Ao

* Two modes intersect at a transition

Transfer




Legged Robot Motion
Constraints

Full-body coordination: 6DOF
“virtual base” + N joints

Collision avoidance
Joint limits

Torque limits

Frictional contact

At all configurations g€.S£(3 )X RN
 cl(g)=dl,...cn(q)=dn
* Colliding(q)=false
* There exist joint torques 7and contact forces f;
to satisfy the quasistatic balance equations:
G(qg)=1+)TE/LTT (q)fLi
JSLEFCL foralli=1,...,n
G: the generalized gravity vector
J:: the Jacobian of the i'th contact point
FC.: the i’th friction cone

f

XTI,



Multi-modal planning: the
discrete mode case

* Given a discrete set of modes whose subspaces intersect,
can plan reliably using a multi-modal planner
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« MMPRM: probabilistic completeness, exponential
convergence guarantees



Exploiting discrete structure

* The mode graph itself is a rich source of structure

* Modes often arise from task-and-motion planning
problems => use efficient task planners for guidance

Continuous strategy:.
Biasing mode / transition

samples

Discrete strategy. Selecting
fruitful modes using search

More mode Bhorgleansition samples
Completeness: eventually Completeness: each mode
& transition sampled O(N)

consider all modes
times

Bretl et al 2004
Nielsen and Kavraki 2000
[Hauser and Latombe 2009]



The continuous case: dimension
and COdimenSion [Hauser and Ng Thow Hing 2010]

e Codimension: the variables not involved in
motion, but involved in defining the shape of Alo

Stance & footstep locations Transit space: Transfer space:
location of object grasp parameters

* Infinity of manifolds



Definition

° Define J=(m,6’) Transit C-spaces
e min 1,...,M the mode “family”
o JeXtm the codimension

e ¥Jm is the codimensional space

e m indicates how codimensions map to constraint
changes

* Tree-growing random sampling in codimension space:
probabilistically complete

* Dimensions in one family will become the
codimension of other families

Object position &



Multi-modal structure

fz‘ransz’z‘, 74ob)0 )=(qglrob,Tlob)) s.t.

gimin <glrob <glmax
Joint limits

Robot-env collision

R(glrob )NE=0D Robot-obj collision

R(glrob )NTlobj-O=0 Stationary object
7lobj=TlobH)0

o Fltransfer,Tlgrasp )=(qglrob,Tlobj ) s.t.
gimin <glrob <glmax

R(girob )NE=0Q Obj-env collision
7dobj-ONE=Q Stationary grasp
TNobj=Tlee (glrob ) -Tigrasp

Joint limits

Robot-env collision



Multi-modal structure

. fz‘rcmszz‘ 74ob)0 )=(qglrob,Tlob)) s.t.
min <glrob <glmax

R(glrob )NE=0Q

R(girob )NTlobj-O=0 Precomputed
Tlobj=Tlob)0 roadmaps

o Fltransfer,Tlgrasp )=(qglrob,Tlobj ) s.t.
gimin <glrob <glmax

R(glrob )INE=0

7dobj-ONE=0

TNobj=Tlee (glrob ) -Tigrasp



Multi-modal structure

o Ftransit,Tlob)0 )N F(transfer,Tigrasp )=(glrob,
7lob)) s.t.
gimin <glrob <glmax

R(glrob )NE=0Q

R(qglrob )NTlohy -O=

Object fQZsibility: ) 4 Q)

precofibgtd) - ONE=P

stable collision- . Mode reachability:

free aZé}éyng 7 JoZyO test workspace
limits

TNobj=Tlee (girob ) -Tlgrasp
7lobh)0 €Stable
Tgrasp EGrasps



Multi-Object Pick and Place
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Exploiting Regularlty Motion
Primitives .00~

« A small change in & makes
a small change in

F(m,6)

* Existing solutions can be

Warped to similar modes Original motion clip Adapted to stair
(flat ground step)

1) Transform primitive

2) Bias sampling
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* Robustness of primitive adaptation

Ladders with varying inclination
[70°,90°] and rung spacing [20
cm, 35 cm]

Using motion primitives designed
specifically for 80°, 25cm

72% success rate

« Robustness of controller

Compliant arm: errors in hand
placement tolerated as long as
rail in finger range

Up to 2cm variation in rung
vertical position tolerated

Disturbances: up to 15kg dropped
on robot at 5.5m/s
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The Role of Dynamics

« Generating a geometric path is relatively easy, but...

Direct execution of geometric path

18



[Hauser, RSS 2013]

Problem Definition [Hauser, IRA 20441

[Hauser, IJRR 2014]

[Luo and Hauser, RSS 2015]

* Dynamic constraints

) TA
— Velocity constraints 2min <g < /
vimax t
— Acceleration constraints @Jmin <g< , ;" ,
almax L 1
— Torque constraints Zdmin <7< o h R g et

Dynamic time-scaling with contact

Input

e Geometric path p(s):/0,1]-R7x (continuous first derivatives)

* Stance og(s) maps a point along path to the set of active contact points

* Dynamic constraints

Output

e Time scaling s(2):[0,7]—[0,1] such that trajectory ¢(£)=p(s(%)) satisfies
dynamic constraints at each time point #




Efficient Convex Optimization
Formulation

« Convex optimization formulation of g
time-scaling [Verschure et al 2009]

— Unique minimum

— Solved quickly/robustly using SLP
techniques [Hauser 2013]

— “Bulletproof”
« Fast pruning of irrelevant constraints
« Solution times ~1s for 100D+ robots

k+1




MInTQOS trajectory optimizer: http://motion.pratt.duke.edu/mintos

Failures

M SLP time-scaling
M Kunz and Stilman (2012)
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Faster and more reliable than existing techniques
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Control = Fast Replanning

* MPC is becoming fast enough for relatively high-D
problems... without contact

K. Hauser, WAFR 2010, Autonomous Robots 2011

DeepMPC: Learning Deep Latent Features for
Model Predictive Control

Ian Lenz, Ross Knepper, and Ashutosh Saxena
Department of Computer Science, Cornell University.
Email: {ianlenz, rak, asaxena}@cs.cornell.edu

linear dy is ing, and
in many cases, infeasible. This difficulty is exacerbated in tasks
such as robotic food-cutting, in which dynamics might vary both
with environmental properties, such as material and tool class,
and with time while acting. In this work, we present DeepMPC,
an online real-time model-predictive control approach designed to
handle such difficult tasks. Rather than hand-design a dynamics
model for the task, our approach uses a novel deep architecture
and learning algorithm, learning controllers for complex tasks
directly from data. We validate our method in experiments
on a large-scale dataset of 1488 material cuts for 20 diverse
classes, and in 450 real-world robotic experiments, demonstrating
significant improvement over several other approaches.

Abstract—Designing controllers for tasks with complex non-
: I i

1. INTRODUCTION

Most real-world tasks involve interactions with complex,
non-linear dynamics. Although practiced humans are able to
control these interactions intuitively, developing robotic con-
trollers for them is very difficult. Several common household
activities fall into this category, including scrubbing surfaces,

Fig. 1: Cutting food: Our PR2 robot uses our algorithms to perform
complex, precise food-cutting operations. Given the large variety of
material properties, it is challenging to design appropriate controllers.

Lenz et al, RSS 2015

...and many others...




ldea #2: Where’s the
disconnect?

* [n the hacks

- E.g.
* LIPM: a idealization of biped locomotion
* Grid planning for a 2D cylinder : an approximation of biped
navigation
* Force closure: a idealization of grasping

* Guarded moves: an idealization of optimal policy under
uncertainty

* Visual servoing: uncertainty management
* Reasonable approximations... in some instances

 Made for computational convenience, mathematical
elegance, laziness, time pressure



Thoughts

* These “hacks” are incredibly useful
* Managing uncertainty
* Responsive motion

* MPC not (yet) fast enough for full-body problems
with contact

At the moment, a “unified framework” will need to
exploit hacks, NOT replace them
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